RICE Argon neé

NATIONAL LABORATORY

Portable, MPIl-Interoperable
Coarray Fortran

Chaoran Yang,! Wesley Bland,?
John Mellor-Crummey,! Pavan Balaji?

1Department of Computer Science 2Mathematics and Computer Science Division
Rice University Argonne National Laboratory
Houston, TX Argonne, IL

Parallel Programming Models

Shared memory - Message passing
- Pthread, OpenMP, ... - MPI, ...
- “easy” to program - “scalable”
- hard to scale - hard to program

Process / Process / Process /
Process / Process / Process / Thread Thread Thread
Thread Thread Thread

Interconnect

Partitioned Global Address Space Languages

Combine the strength

shared memory models S Process |/ Process /

“Easy to program” Thread Thread Thread

message passing models

“Scalable”

Example PGAS Languages ey Memory

- Unified Parallel C (C)

- Titanium (Java) Public I\/Iemory
- Coarray Fortran (Fortran)

Related efforts
Language level shared
memory abstraction

- X10 (IBM)
- Chapel (Cray)

- Fortress (Oracle)

Current status

The dominance of Message Passing Interface (MPI)
Most applications on clusters are written using MPI
Many high-level libraries on clusters are built with MPI

Why people do not adopt PGAS languages?

Most PGAS languages are built with a different runtime system
e.g. GASNet

Hard to adopt new programming models in existing applications
incrementally

Problem 1: deadlock

PROGRAM MAY DEADLOCK
USE MPI PO
CALL MPI_ INIT(E)
CALL MPI_COMM RANK(MPI_ COMM WORLD, MY RANK, E)
IF (MYRANK .EQ. 0) A(:)[1] = A(:)
CALL MPI_ BARRIER(MPI_COMM WORLD, IERR)
CALL MPI_ FINALIZE (E)
END PROGRAM

P1

Problem 1: deadlock

PROGRAM MAY DEADLOCK
USE MPI PO
CALL MPI_ INIT(E)
CALL MPI_COMM RANK(MPI_ COMM WORLD, MY RANK, E)
IF (MYRANK .EQ. 0) A(:)[1] = A(:)
CALL MPI_ BARRIER(MPI_COMM WORLD, IERR)
CALL MPI_ FINALIZE (E)
END PROGRAM

Put

P1

Problem 1: deadlock

PROGRAM MAY DEADLOCK
USE MPI PO P1
CALL MPI_ INIT(E)
CALL MPI_COMM RANK(MPI_ COMM WORLD, MY RANK, E) Put

A(:)

CALL MPI_ BARRIER(MPI_COMM WORLD, IERR)

Barrier

IF (MYRANK .EQ. 0) A(:)[1]

CALL MPI FINALIZE (E)

END PROGRAM

Problem 1: deadlock

PROGRAM MAY DEADLOCK

USE MPI

CALL MPI_INIT(E)

CALL MPI_COMM RANK(MPI_COMM WORLD, MY RANK, E) Barrier
IF (MYRANK .EQ. O0) A(:)[1] = A(:)
CALL MPI_ BARRIER(MPI_COMM WORLD, IERR)
CALL MPI_FINALIZE (E)

END PROGRAM

Problem 2: duplicates resources

Memory usage of comm. runtimes
200

B GASNet-only
M MPI-only
Duplicate Runtimes

Memory usage per process
increases as the number of
processes increases

150

At larger scale, excessive
memory use of duplicate
runtimes will hurt scalability

Mapped Memory Size (MB)
o o
o o

16 64 256

Number of processes

The problem

PGAS languages DO NOT play well with MPI
program may deadlock using MPI and other runtimes

program unnecessarily uses duplicated resources

The problem

PGAS languages DO NOT play well with MPI
program may deadlock using MPI and other runtimes

program unnecessarily uses duplicated resources

The solution

Build PGAS language runtimes with MPI

Why people haven't done it?

Previously MPI was considered - MPI-3 adds extensive support for
insufficient for this goal* Remote Memory Access (RMA)
“Separate” Window (MPI-2) “Unified’ window (MPI-3)

Remote write Public

Remote write Local write

Local write

Private

MPI Window

MPI Window

*: D. Bonachea and J. Duell. Problems with using MPI1 1.1 and 2.0 as compilation targets for parallel language implementations.
Int. J. High Perform. Comput. Netw., 1(1-3):91-99, Aug. 2004.

Question to investigate

- Build PGAS runtimes with MPI-3
- Does it provide full interoperability?

- Does it degrade performance?

Question to investigate

- Build PGAS runtimes with MPI-3
- Does it provide full interoperability?

- Does it degrade performance?

Approach

- Build a PGAS language (Coarray Fortran) with MPI-3 and
evaluate its interoperability and performance

Coarray in Fortran 2008 (CAF)

Fortran 2008 Standard contains features for parallel programming using a
SPMD (Single Program Multiple Data) model

What is a coarray?

extends array syntax with codimensions, e.g. REAL :: X(10,10)[*]

How to access a coarray?

Reference with [| mean data on specified image, e.g. X(1,:) = X(1,:)[p]

May be allocatable, structure components, dummy or actual arguments

10

Coarray Fortran 2.0 (CAF 2.0)

“A rich extension to Coarray Fortran developed at Rice University”

Teams (like MPlI communicator) and collectives
Asynchronous operations

asynchronous copy, asynchronous collectives, and function shipping
Synchronization constructs

events, cofence, and finish

Features in Blue has been adopted by Fortran standard committee

11

Coarray and MPI-3 RMA

Mapping coarray features to MPI-3 APls

Initialization

 INTEGER :: A(100,100)[*]
MPI_WIN_ALLOCATE, then MPI_WIN_LOCK_ALL

Coarray Read & Write

* A(:)[1] = A(:); A(:) = A(:)I[2]
MPI_RPUT; MPI_RGET

Synchronization

MPI_WIN_SYNC (local) & MPI_WIN_FLUSH (_ALL) (global)

12

Active Messages

“Lightweight, low-level, asynchronous, remote procedure calls”

Many CAF 2.0 features are built on top of Active Messages
MPI1 does not provide an implementation of Active Messages
Emulate Active Messages with MPI_Send and MPI_Recyv routines
hurt performance - cannot overlap communication with AM handlers

hurt interoperabillity - could cause deadlock

MPI_Reduce

13

Active Messages

“Lightweight, low-level, asynchronous, remote procedure calls”

Many CAF 2.0 features are built on top of Active Messages
MPI1 does not provide an implementation of Active Messages
Emulate Active Messages with MPI_Send and MPI_Recyv routines
hurt performance - cannot overlap communication with AM handlers

hurt interoperabillity - could cause deadlock

spawn

wait

MPI Reduc

13

Active Messages

“Lightweight, low-level, asynchronous, remote procedure calls”

Many CAF 2.0 features are built on top of Active Messages
MPI1 does not provide an implementation of Active Messages
Emulate Active Messages with MPI_Send and MPI_Recyv routines
hurt performance - cannot overlap communication with AM handlers

hurt interoperabillity - could cause deadlock

spawn

wait

13

CAF 2.0 Events

“similar to counting semaphores”

Maps to Active Messages

- CALL event_notify(event, n)

- Need to ensure all previous
asynchronous operations have
completed before the notification

for each window
MPI_Win_sync(win)

for each dirty window
MPI_Win_flush_all(win)

AM_Request(..) // MPI Isend

- CALL event_wait(event, n)

- Also serves as a compiler barrier
(prevent compiler from reorder
operations upward)

while (count < n)
for each window
MPI_Win_sync(win)
AM_Poll(..) // MPI_Iprobe

14

CAF 2.0 Asynchronous Operations

- copy_async(dest, src, dest_event, src_event, pred_event)

15

CAF 2.0 Asynchronous Operations

- copy_async(dest, src, dest_event, src_event, pred_event)

copy_async

15

CAF 2.0 Asynchronous Operations

- copy_async(dest, src, dest_event, src_event, pred_event)

pred_event

copy_async

15

CAF 2.0 Asynchronous Operations

- copy_async(dest, src, dest_event, src_event, pred_event)

pred_event

copy_async

15

CAF 2.0 Asynchronous Operations

- copy_async(dest, src, dest_event, src_event, pred_event)

pred_event

copy_async

src_event

15

CAF 2.0 Asynchronous Operations

- copy_async(dest, src, dest_event, src_event, pred_event)

pred_event

copy_async

src_event

15

CAF 2.0 Asynchronous Operations

- copy_async(dest, src, dest_event, src_event, pred_event)

pred_event

copy_async

src_event

15

CAF 2.0 Asynchronous Operations

- copy_async(dest, src, dest_event, src_event, pred_event)

pred_event

copy_async

src_event

I dest event

15

CAF 2.0 Asynchronous Operations

copy_async(dest, src, dest_event, src_event, pred_event)

pred_event

copy_async

src_event

I dest event

Map copy_async to Active Message

15

CAF 2.0 Asynchronous Operations

copy_async(dest, src, dest_event, src_event, pred_event)

pred_event

When

posted, send
AM request src_event

copy_async

I dest event

Map copy_async to Active Message

15

CAF 2.0 Asynchronous Operations

copy_async(dest, src, dest_event, src_event, pred_event)

pred_event

When

posted, send
AM request src_event

After AM
request sent

- Map copy_async to Active Message

copy_async

I dest event

15

CAF 2.0 Asynchronous Operations

copy_async(dest, src, dest_event, src_event, pred_event)

pred_event After AM

handler
complete

When

posted, send
AM request src_event

After AM
request sent

- Map copy_async to Active Message

copy_async

I dest event

15

CAF 2.0 Asynchronous Operations

copy_async(dest, src, dest_event, src_event, pred_event)

pred_event After AM

handler
complete

When

posted, send
AM request src_event

After AM
request sent

- Map copy_async to Active Message

copy_async

I dest event

MPI| does not have AM support

15

CAF 2.0 Asynchronous Operations

copy_async(dest, src, dest_event, src_event, pred_event)

pred_event After AM

handler
complete

When

posted, send
AM request src_event

After AM
request sent

- Map copy_async to Active Message

copy_async

I dest event

MPI| does not have AM support
Map copy_async to MPI_RPUT (or MPI_RGET)

15

CAF 2.0 Asynchronous Operations

copy_async(dest, src, dest_event, src_event, pred_event)

pred_event

copy_async

src_event

I dest event

Map copy_async to Active Message
MPI| does not have AM support
Map copy_async to MPI_RPUT (or MPI_RGET)

15

CAF 2.0 Asynchronous Operations

copy_async(dest, src, dest_event, src_event, pred_event)

pred_event
COpy_async

When

posted, send src_event
MPI_Rput

I dest event

Map copy_async to Active Message
MPI| does not have AM support
Map copy_async to MPI_RPUT (or MPI_RGET)

15

CAF 2.0 Asynchronous Operations

copy_async(dest, src, dest_event, src_event, pred_event)

pred_event
COpy_async

When

posted, send src_event
MPI_Rput

=

After
MPI_Rput
returns

Map copy_async to Active Message

I dest event

MPI| does not have AM support
Map copy_async to MPI_RPUT (or MPI_RGET)

15

CAF 2.0 Asynchronous Operations

copy_async(dest, src, dest_event, src_event, pred_event)

pred_event

copy_async

When

posted, send src_event
MPI_Rput

=

After I dest_event

MPI_Rput After
returns MPI_WIN_FLUSH?
Map copy_async to Active Message

MPI| does not have AM support
Map copy_async to MPI_RPUT (or MPI_RGET)

15

CAF 2.0 Asynchronous Operations

copy_async(dest, src, dest_event, src_event, pred_event)

pred_event
COpy_async

When

posted, send src_event
MPI_Rput
=

After

dest event
MPI_Rput I
returns

After
MPI_WIN_FLUSH?
Map copy_async to Active Message

MPI| does not have AM support
Map copy_async to MPI_RPUT (or MPI_RGET)

No asynchronous synchronization operation in MPI

Evaluation

2 machines
Cluster (InfiniBand) and Cray XC30
3 benchmarks and 1 mini-app
RandomAccess, FFT, HPL, and CGPOP
2 implementations

CAF-MPI and CAF-GASNet

Nodes Cores/Node Memory/Node

Interconnect

MPI Version

Cluster (Fusion) 320 2x4 32GB

Cray XC30 (Edison) 5,200 2x12 64GB

InfiniBand QDR

Cray Aries

MVAPICHZ2-1.9

CRAY MPI-6.0.2

16

GUPS

100

10

0.1

RandomAccess

“Measures worst case system throughput”

RandomAccess on Edison (Cray XC30)

O CAF-MPI
©O CAF-GASNet
IDEAL-SCALING (based on CAF-MPI)

16

32 64 128 256 512 1024 2048 4096
Number of processes

GUPS

RandomAccess on Fusion (InfiniBand)

100
‘O CAF-MPI
O CAF-GASNet
IDEAL-SCALING (based on CAF-MPI)
10
y
0
0

8 16 32 64 128 256 512 1024 2048
Number of processes

17

Performance Analysis of RandomAccess

The time spent in communication

are about the same

event_notify is slower in CAF-MPI
because of MPI_WIN_ FLUSH ALL

MPI_WIN_FLUSH_ALL performs

MPI_WIN_FLUSH one by one

800

600

400

Time (in seconds)

200

18

Time breakdown of RandomAccess

B event_notify
event_wait
I coarray_write
B Computation

3.60

255.74
405.75

| —

CAF-GASNet

CAF-MPI

10000

1000

100

GFlops

10

1

FFT

“Measures all-to-all communication”

FFT on Edison (Cray XC30)

O CAF-MPI
O CAF-GASNet

IDEAL-SCALING

16

32

64

128 256 512 1024 2048 4096
Number of processes

FFT on Fusion (InfiniBand)

1000
O CAF-MPI
©O CAF-GASNet
IDEAL-SCALING
100
0
Q
O
L
G
10
y

8 16 32 64 128 256 512 1024 2048
Number of processes

19

Performance Analysis of FFT

- The CAF 2.0 version of FFT solely uses
ALLtoALL for communication

- CAF-MPI performs better because of fast
all-to-all implementation

— N W
(00) B~ o

Time (seconds)
N

20

Time breakdown of FFT

1 Computation
M All-to-all

CAF-GASNet CAF-MPI

High Performance Linpack

“computation intensive”

HPL on Edison (Cray XC30) HPL on Fusion (InfiniBand)
100 10.00
O CAF-MPI O CAF-MPI
O CAF-GASNet O CAF-GASNet
IDEAL-SCALING IDEAL-SCALING
10 1.00
(70} (/0]
o (o}
ke) ke)
LL LL
= =
1 0.10
0.1 0.01
16 64 256 1024 4096 16 64 256 1024
Number of processes Number of processes

21

CGPOP

“A CAF+MPI hybrid application”

The conjugate gradient solver from LANL Parallel Ocean Program 2.0
performance bottleneck of the full POP 2.0 application

Performs linear algebra computation interspersed with two comm. steps:
GlobalSum: a 3-word vector sum (MPI_Reduce)

UpdateHalo: boundary exchange between neighboring subdomains (CAF)

Andrew | Stone, John M. Dennis, Michelle Mills Strout, “Evaluating Coarray Fortran with the CGPOP Miniapp"

22

CGPOP

CGPOP on Edison (Cray XC30) CGPOP on Fusion (InfiniBand)
3000 700
©O CAF-MPI O CAF-MPI
O CAF-GASNet O CAF-GASNet

8 2050 8 505
C C
(@) O
(& O
(O] (O]
(/9] w
= =
(O] (O]

£ 1500 £ 350
c =
9O 9O
5 5
o o

x 750 x 175
L L

0 0

24 72 120 168 216 264 312 360 24 72 120 168 216 264 312 360
Number of processes Number of processes

23

Conclusions

The benefits of building runtime systems on top of MPI
Interoperable with numerous MPI based libraries (Fortran 2008)
Deliver performance comparable to runtimes built with GASNet
MP/I’s rich interface is time-saving

What current MPI RMA lacks
MPI_WIN_RFLUSH - overlap synchronization with computation

Active Messages - full interoperability

24

