
Portable, MPI-Interoperable!
Coarray Fortran

Chaoran Yang,1 Wesley Bland,2!
John Mellor-Crummey,1 Pavan Balaji2

1Department of Computer Science!
Rice University!

Houston, TX

2Mathematics and Computer Science Division!
Argonne National Laboratory!

Argonne, IL

Parallel Programming Models

2

• Message passing!
• MPI, …!

• “scalable”!

• hard to program

• Shared memory!
• Pthread, OpenMP, …!

• “easy” to program!

• hard to scale

Process /
Thread

Process /
Thread

Process /
Thread

Memory

Process /
Thread

Process /
Thread

Process /
Thread

Memory Memory Memory

Interconnect

Partitioned Global Address Space Languages

• Combine the strength!
• shared memory models!

• “Easy to program”!
• message passing models!

• “Scalable”!

• Example PGAS Languages!
• Unified Parallel C (C)!

• Titanium (Java)!

• Coarray Fortran (Fortran)!

• Related efforts!
• X10 (IBM)!

• Chapel (Cray)!

• Fortress (Oracle)

3

Memory Memory

Process /
Thread

Process /
Thread

Process /
Thread

Memory Memory Memory

SharedMemory

Language level shared
memory abstraction

Private

Public

Current status
• The dominance of Message Passing Interface (MPI)!

• Most applications on clusters are written using MPI!

• Many high-level libraries on clusters are built with MPI!

• Why people do not adopt PGAS languages?!

• Most PGAS languages are built with a different runtime system
e.g. GASNet!

• Hard to adopt new programming models in existing applications
incrementally

4

Problem 1: deadlock

PROGRAM MAY_DEADLOCK!

! USE MPI!

! CALL MPI_INIT(E)!

! CALL MPI_COMM_RANK(MPI_COMM_WORLD, MY_RANK, E)!

! IF (MYRANK .EQ. 0) A(:)[1] = A(:)!

! CALL MPI_BARRIER(MPI_COMM_WORLD, IERR)!

! CALL MPI_FINALIZE(E)!

END PROGRAM!

5

P0 P1

Problem 1: deadlock

PROGRAM MAY_DEADLOCK!

! USE MPI!

! CALL MPI_INIT(E)!

! CALL MPI_COMM_RANK(MPI_COMM_WORLD, MY_RANK, E)!

! IF (MYRANK .EQ. 0) A(:)[1] = A(:)!

! CALL MPI_BARRIER(MPI_COMM_WORLD, IERR)!

! CALL MPI_FINALIZE(E)!

END PROGRAM!

Put

5

P0 P1

Problem 1: deadlock

PROGRAM MAY_DEADLOCK!

! USE MPI!

! CALL MPI_INIT(E)!

! CALL MPI_COMM_RANK(MPI_COMM_WORLD, MY_RANK, E)!

! IF (MYRANK .EQ. 0) A(:)[1] = A(:)!

! CALL MPI_BARRIER(MPI_COMM_WORLD, IERR)!

! CALL MPI_FINALIZE(E)!

END PROGRAM!

Put Barrier

5

P0 P1

Problem 1: deadlock

PROGRAM MAY_DEADLOCK!

! USE MPI!

! CALL MPI_INIT(E)!

! CALL MPI_COMM_RANK(MPI_COMM_WORLD, MY_RANK, E)!

! IF (MYRANK .EQ. 0) A(:)[1] = A(:)!

! CALL MPI_BARRIER(MPI_COMM_WORLD, IERR)!

! CALL MPI_FINALIZE(E)!

END PROGRAM!

Put Barrier

5

P0 P1

Problem 2: duplicates resources
Memory usage of comm. runtimes

M
ap

pe
d

M
em

or
y

Si
ze

 (M
B)

0

50

100

150

200

Number of processes

16 64 256

154
143

133
115109107

393426

GASNet-only
MPI-only
Duplicate Runtimes • Memory usage per process

increases as the number of
processes increases!

• At larger scale, excessive
memory use of duplicate
runtimes will hurt scalability

6

The problem
• PGAS languages DO NOT play well with MPI!

• program may deadlock using MPI and other runtimes!

• program unnecessarily uses duplicated resources

7

The problem
• PGAS languages DO NOT play well with MPI!

• program may deadlock using MPI and other runtimes!

• program unnecessarily uses duplicated resources

7

The solution
Build PGAS language runtimes with MPI

Why people haven’t done it?

8

*: D. Bonachea and J. Duell. Problems with using MPI 1.1 and 2.0 as compilation targets for parallel language implementations.
Int. J. High Perform. Comput. Netw., 1(1-3):91–99, Aug. 2004.

• MPI-3 adds extensive support for
Remote Memory Access (RMA)

• Previously MPI was considered
insufficient for this goal*

Public

Private Local write

Remote write

“Separate” Window (MPI-2)

MPI Window

Unified

“Unified’ window (MPI-3)

Remote write Local write

MPI Window

Question to investigate

• Build PGAS runtimes with MPI-3!

• Does it provide full interoperability? !

• Does it degrade performance?

9

Question to investigate

• Build PGAS runtimes with MPI-3!

• Does it provide full interoperability? !

• Does it degrade performance?

9

Approach
• Build a PGAS language (Coarray Fortran) with MPI-3 and

evaluate its interoperability and performance

Coarray in Fortran 2008 (CAF)

• Fortran 2008 Standard contains features for parallel programming using a
SPMD (Single Program Multiple Data) model!

• What is a coarray?!

• extends array syntax with codimensions, e.g. REAL :: X(10,10)[*]!

• How to access a coarray?!

• Reference with [] mean data on specified image, e.g. X(1,:) = X(1,:)[p]!

• May be allocatable, structure components, dummy or actual arguments

10

Coarray Fortran 2.0 (CAF 2.0)

• Teams (like MPI communicator) and collectives!

• Asynchronous operations!

• asynchronous copy, asynchronous collectives, and function shipping!

• Synchronization constructs!

• events, cofence, and finish

“A rich extension to Coarray Fortran developed at Rice University”

11

Features in Blue has been adopted by Fortran standard committee

Coarray and MPI-3 RMA

• Initialization!

• INTEGER :: A(100,100)[*]

• MPI_WIN_ALLOCATE, then MPI_WIN_LOCK_ALL!

• Coarray Read & Write!

• A(:)[1] = A(:); A(:) = A(:)[2]

• MPI_RPUT; MPI_RGET!

• Synchronization!

• MPI_WIN_SYNC (local) & MPI_WIN_FLUSH (_ALL) (global)

12

Mapping coarray features to MPI-3 APIs

Active Messages

• Many CAF 2.0 features are built on top of Active Messages!

• MPI does not provide an implementation of Active Messages!

• Emulate Active Messages with MPI_Send and MPI_Recv routines!

• hurt performance - cannot overlap communication with AM handlers!

• hurt interoperability - could cause deadlock

13

spawn

MPI_Reduce

“Lightweight, low-level, asynchronous, remote procedure calls”

wait

Active Messages

• Many CAF 2.0 features are built on top of Active Messages!

• MPI does not provide an implementation of Active Messages!

• Emulate Active Messages with MPI_Send and MPI_Recv routines!

• hurt performance - cannot overlap communication with AM handlers!

• hurt interoperability - could cause deadlock

13

spawn

MPI_Reduce

“Lightweight, low-level, asynchronous, remote procedure calls”

wait

Active Messages

• Many CAF 2.0 features are built on top of Active Messages!

• MPI does not provide an implementation of Active Messages!

• Emulate Active Messages with MPI_Send and MPI_Recv routines!

• hurt performance - cannot overlap communication with AM handlers!

• hurt interoperability - could cause deadlock

13

spawn

MPI_Reduce DEADLOCK!

“Lightweight, low-level, asynchronous, remote procedure calls”

wait

CAF 2.0 Events

• CALL event_notify(event, n)!
• Need to ensure all previous

asynchronous operations have
completed before the notification

for each window
 MPI_Win_sync(win)
for each dirty window
 MPI_Win_flush_all(win)
AM_Request(…) // MPI_Isend

while (count < n)
 for each window
 MPI_Win_sync(win)
 AM_Poll(…) // MPI_Iprobe

• CALL event_wait(event, n)!
• Also serves as a compiler barrier

(prevent compiler from reorder
operations upward)

“similar to counting semaphores”

14

Maps to Active Messages

CAF 2.0 Asynchronous Operations

• copy_async(dest, src, dest_event, src_event, pred_event)

15

copy_async

CAF 2.0 Asynchronous Operations

• copy_async(dest, src, dest_event, src_event, pred_event)

15

copy_async

CAF 2.0 Asynchronous Operations

• copy_async(dest, src, dest_event, src_event, pred_event)

15

pred_event

copy_async

CAF 2.0 Asynchronous Operations

• copy_async(dest, src, dest_event, src_event, pred_event)

15

pred_event

copy_async

CAF 2.0 Asynchronous Operations

• copy_async(dest, src, dest_event, src_event, pred_event)

15

pred_event

src_event

copy_async

CAF 2.0 Asynchronous Operations

• copy_async(dest, src, dest_event, src_event, pred_event)

15

pred_event

src_event

copy_async

CAF 2.0 Asynchronous Operations

• copy_async(dest, src, dest_event, src_event, pred_event)

15

pred_event

src_event

copy_async

CAF 2.0 Asynchronous Operations

• copy_async(dest, src, dest_event, src_event, pred_event)

15

pred_event

src_event

dest_event

copy_async

CAF 2.0 Asynchronous Operations

• copy_async(dest, src, dest_event, src_event, pred_event)

15

pred_event

src_event

dest_event

• Map copy_async to Active Message

copy_async

CAF 2.0 Asynchronous Operations

• copy_async(dest, src, dest_event, src_event, pred_event)

15

pred_event

src_event

dest_event

• Map copy_async to Active Message

When
posted, send
AM request

copy_async

CAF 2.0 Asynchronous Operations

• copy_async(dest, src, dest_event, src_event, pred_event)

15

pred_event

src_event

dest_event

• Map copy_async to Active Message

When
posted, send
AM request

After AM
request sent

copy_async

CAF 2.0 Asynchronous Operations

• copy_async(dest, src, dest_event, src_event, pred_event)

15

pred_event

src_event

dest_event

• Map copy_async to Active Message

When
posted, send
AM request

After AM
request sent

After AM
handler

complete

copy_async

CAF 2.0 Asynchronous Operations

• copy_async(dest, src, dest_event, src_event, pred_event)

15

pred_event

src_event

dest_event

• Map copy_async to Active Message

• MPI does not have AM support

When
posted, send
AM request

After AM
request sent

After AM
handler

complete

copy_async

CAF 2.0 Asynchronous Operations

• copy_async(dest, src, dest_event, src_event, pred_event)

15

pred_event

src_event

dest_event

• Map copy_async to Active Message

• MPI does not have AM support

• Map copy_async to MPI_RPUT (or MPI_RGET)

When
posted, send
AM request

After AM
request sent

After AM
handler

complete

copy_async

CAF 2.0 Asynchronous Operations

• copy_async(dest, src, dest_event, src_event, pred_event)

15

pred_event

src_event

dest_event

• Map copy_async to Active Message

• MPI does not have AM support

• Map copy_async to MPI_RPUT (or MPI_RGET)

copy_async

CAF 2.0 Asynchronous Operations

• copy_async(dest, src, dest_event, src_event, pred_event)

15

pred_event

src_event

dest_event

• Map copy_async to Active Message

• MPI does not have AM support

• Map copy_async to MPI_RPUT (or MPI_RGET)

When
posted, send

MPI_Rput

copy_async

CAF 2.0 Asynchronous Operations

• copy_async(dest, src, dest_event, src_event, pred_event)

15

pred_event

src_event

dest_event

• Map copy_async to Active Message

• MPI does not have AM support

• Map copy_async to MPI_RPUT (or MPI_RGET)

When
posted, send

MPI_Rput

After
MPI_Rput

returns

copy_async

CAF 2.0 Asynchronous Operations

• copy_async(dest, src, dest_event, src_event, pred_event)

15

pred_event

src_event

dest_event

• Map copy_async to Active Message

• MPI does not have AM support

• Map copy_async to MPI_RPUT (or MPI_RGET)

When
posted, send

MPI_Rput

After
MPI_Rput

returns
After

MPI_WIN_FLUSH?

copy_async

CAF 2.0 Asynchronous Operations

• copy_async(dest, src, dest_event, src_event, pred_event)

15

pred_event

src_event

dest_event

• Map copy_async to Active Message

• MPI does not have AM support

• Map copy_async to MPI_RPUT (or MPI_RGET)

• No asynchronous synchronization operation in MPI

When
posted, send

MPI_Rput

After
MPI_Rput

returns
After

MPI_WIN_FLUSH?

Evaluation
• 2 machines!

• Cluster (InfiniBand) and Cray XC30!

• 3 benchmarks and 1 mini-app !

• RandomAccess, FFT, HPL, and CGPOP!

• 2 implementations!

• CAF-MPI and CAF-GASNet

System Nodes Cores / Node Memory / Node Interconnect MPI Version

Cluster (Fusion) 320 2x4 32GB InfiniBand QDR MVAPICH2-1.9

Cray XC30 (Edison) 5,200 2x12 64GB Cray Aries CRAY MPI-6.0.2

16

RandomAccess

RandomAccess on Edison (Cray XC30)

G
U

PS

0.1

1

10

100

Number of processes
16 32 64 128 256 512 1024 2048 4096

CAF-MPI
CAF-GASNet
IDEAL-SCALING (based on CAF-MPI)

RandomAccess on Fusion (InfiniBand)

G
U

PS

0

0

1

10

100

Number of processes
8 16 32 64 128 256 512 1024 2048

CAF-MPI
CAF-GASNet
IDEAL-SCALING (based on CAF-MPI)

17

“Measures worst case system throughput”

Performance Analysis of RandomAccess

• The time spent in communication
are about the same !

• event_notify is slower in CAF-MPI
because of MPI_WIN_FLUSH_ALL!

• MPI_WIN_FLUSH_ALL performs
MPI_WIN_FLUSH one by one

Time breakdown of RandomAccess

Ti
m

e
(in

 s
ec

on
ds

)

0

200

400

600

800

CAF-GASNet CAF-MPI

219.08
3.60

255.74
405.75

160.09

53.28

Computation
coarray_write
event_wait
event_notify

18

FFT

FFT on Fusion (InfiniBand)

G
Fl

op
s

1

10

100

1000

Number of processes
8 16 32 64 128 256 512 1024 2048

CAF-MPI
CAF-GASNet
IDEAL-SCALING

FFT on Edison (Cray XC30)

G
Fl

op
s

1

10

100

1000

10000

Number of processes
16 32 64 128 256 512 1024 2048 4096

CAF-MPI
CAF-GASNet
IDEAL-SCALING

19

“Measures all-to-all communication”

Performance Analysis of FFT

• The CAF 2.0 version of FFT solely uses
ALLtoALL for communication!

• CAF-MPI performs better because of fast
all-to-all implementation

Time breakdown of FFT

Ti
m

e
(s

ec
on

ds
)

0

6

12

18

24

30

CAF-GASNet CAF-MPI

8.31

7.94

6.06

17.92

All-to-all
Computation

20

High Performance Linpack

HPL on Fusion (InfiniBand)

TF
lo

ps

0.01

0.10

1.00

10.00

Number of processes
16 64 256 1024

CAF-MPI
CAF-GASNet
IDEAL-SCALING

HPL on Edison (Cray XC30)

TF
lo

ps

0.1

1

10

100

Number of processes
16 64 256 1024 4096

CAF-MPI
CAF-GASNet
IDEAL-SCALING

21

“computation intensive”

CGPOP

• The conjugate gradient solver from LANL Parallel Ocean Program 2.0!

• performance bottleneck of the full POP 2.0 application!

• Performs linear algebra computation interspersed with two comm. steps:!

• GlobalSum: a 3-word vector sum (MPI_Reduce)!

• UpdateHalo: boundary exchange between neighboring subdomains (CAF)

22

Andrew I Stone, John M. Dennis, Michelle Mills Strout, “Evaluating Coarray Fortran with the CGPOP Miniapp"

“A CAF+MPI hybrid application”

CGPOP

CGPOP on Edison (Cray XC30)

Ex
ec

ut
io

n
tim

e
(in

 s
ec

on
ds

)

0

750

1500

2250

3000

Number of processes
24 72 120 168 216 264 312 360

CAF-MPI
CAF-GASNet

CGPOP on Fusion (InfiniBand)

Ex
ec

ut
io

n
tim

e
(in

 s
ec

on
ds

)

0

175

350

525

700

Number of processes
24 72 120 168 216 264 312 360

CAF-MPI
CAF-GASNet

23

Conclusions

• The benefits of building runtime systems on top of MPI!

• Interoperable with numerous MPI based libraries (Fortran 2008)!

• Deliver performance comparable to runtimes built with GASNet!

• MPI’s rich interface is time-saving!

• What current MPI RMA lacks!

• MPI_WIN_RFLUSH - overlap synchronization with computation!

• Active Messages - full interoperability

24

